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1 Introduction
The scale of genetic data generation has increased at a staggering
rate since 2001 [4, 5, 13]. A primary driver of this is decreased DNA
sequencing costs [24], which have enabled the curation of large
genetic datasets for personal and public health, ancestry inference,
relative identification and advanced forensics. For example, there
are whole genome sequences combined with medical records from
approximately 400,000 US residents in the National Institutes of
Health (NIH) All of Us Research Study [16]. Direct-to-consumer
(DTC) genetic testing companies have much more data: 23andMe
has 14 million customer sequences [1] and Ancestry has 25 million
[3]. The increase in genetic data and improvements in technologies
has resulted in the following aspirational “bold prediction” for 2030
by the NIH: “a person’s complete genome sequence along with
informative annotations can be securely and readily accessible on
their smartphone” [9]. But current genetic data use is commonly
siloed with their own regulatory environments.

In this paper, we organize the uses of genetic data along four dis-
tinct ‘pillars’: clinical practice, research, forensic and government
use, and recreational use [23] and make the argument that inconsis-
tent and leaky regulation across these pillars introduces opportunity
for genetic discrimination and privacy violations. Since 2020, the
U.S. Department of Homeland Security has grown its genetic data-
base by more than 1.5 million people, the majority of whom are
people of color [8]. 23andMe suffered a data breach after a hacker
accessed 14,000 customer profiles1, primarily targeting individuals
of Chinese and Ashkenazi Jewish descent [6]. These are serious

1While genetic data was not accessed, ancestry information and relative names were[2]
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concerns that must be addressed today given the number of recent
proposals for genetic data applications in public infrastructure, (e.g.,
to assess intelligence proxies, like IQ [19]; insurance premiums [11];
or educational outcomes [10]). The only federal-level legislation
currently in effect is the Genetic Information Non-Discrimination
Act (GINA) of 2008, which prohibits the use of genetic information
in employment decisions and discrimination based on genetic infor-
mation in health insurance coverage but does not cover long-term
care, disability, or life insurance. The question of how genetic data
is being analyzed is critical when understanding what protections
are necessary for individuals who submit their genetic data to these
‘pillars’.

From a scientific and modeling perspective, the analysis of ge-
netic data is also critically limited to simple linear models correlated
with trait data. We outline several concerns of this status quo in a
case study in Section 3. As of now, the deployment of AI technolo-
gies for genetic inference is nascent. AI will, we believe, exacerbate
the risks we outline as they will likely result in seemingly bet-
ter trait prediction by modeling nonlinear interactions and taking
advantage of gene-environment correlations [25]. However, the
uncertainties associated with the basic scientific inference will be
compounded because of the lack of interpretability and complexity
of AI models. With the vast increase of genetic data collection, its
increasing use (and misuse), and the complexities involved in its
analysis and interpretation, comprehensive genetic data governance
is urgently needed.

2 Risk Assessment Framework
Our goal in this section is to develop a risk assessment framework
for genetic data governance. Similar to the aims of the Blueprint for
the AI Bill of Rights [18], we motivate our framework with three
central questions:

I. What values (i.e. moral principles and civil liberties)
should be preserved?

(1) Right to action: The individual, only, has the choice to
submit (and the freedom to not submit) their genome2;

(2) Ownership of the genome: The individual owns their
genome and controls the usage of their genome;

(3) Right to privacy: the individual has a right to privacy to
their genome and inferences made from their genome;

(4) Right to knowledge: The individual has a right to know or
not know inferences made from their genome;

2We use “genome” to refer to a physical DNA samples of an individual and any
sequencing/genotyping data.
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(5) Opportunities for advancement: Genetic data should not
be used to deprive the individual of opportunities, including
education, access to financial tools, insurance, housing, social
services, and reproductive choices;

(6) Benefits of inclusion: The Belmont principle states “those
who bear the burdens of research...should receive the bene-
fits in equal measure to the burdens”[22], which applies to
individuals and their genetic data.3

II. What are the vulnerabilities in the current system that
can compromise these values?

(1) Unsettled science: The role of genetics in shaping complex
traits is poorly understood, leading to an overstated role of
genetics (genetic determinism), especially for behavioral and
cognitive traits.

(2) Rapid evolution of genetic data/methods: Genetic data
collection and analysis are advancing faster than legal pro-
tections, leaving gaps such as the exclusion of education
discrimination from GINA.

(3) Guilt by association: DNA databases used in criminal in-
vestigations can implicate biological relatives, even if they
have never submitted their DNA.

(4) Geographical legislative patchwork:Genetic privacy laws
vary widely by state, creating legal uncertainties for individ-
uals who move or share data across state lines.

III. What are the harms that arise as a result from the
vulnerabilities?

(1) Leakage to the family:Genetic data can reveal information
about relatives who never consented to sharing their DNA,
affecting insurance, medical decisions, and identity security.

(2) Loss of anonymity: Genetic information can expose sensi-
tive traits like race, gender, or disease markers, compromis-
ing privacy for individuals and their genetic relatives.

(3) Loss of data control: Private genetic testing companies
control how genetic data is collected, stored, and monetized,
often without transparency or clear user consent.

(4) Misinformed actions: Individuals may make critical med-
ical, financial, or lifestyle decisions based on incomplete
or evolving genetic interpretations, sometimes indirectly
through relatives’ test results.

(5) Financial impact: People may face financial burdens due to
denied insurance coverage, legal defense costs, or extortion
schemes related to genetic data leaks.

3 Case Study: Genetics and Educational
Attainment

Researchers typically conduct genome-wide association studies
(GWAS), which identify genetic variants that are associated with
a trait and quantify the effect of each variant on the trait. The
learned effect sizes of variants (also called weights) are directly
interpretable4 and can be used for trait prediction. The polygenic
score (PGS), the gold standard for trait prediction, is calculated

3Variant Bio is a biotech company that collects genetic data from Indigenous groups
from around the world and participates in revenue sharing with the communities they
collect data from.
4For example, in a GWAS for height, an effect size of 0.01 would mean that the variant
increases height by an average of 0.01 cm.

as a weighted sum of genetic variants, with each variant scaled by
its corresponding GWAS effect size. Any GWAS is heavily influ-
enced by the choice of a reference dataset — analogous to training
data in Machine Learning — which contains genetic data and their
“ground truth” annotations of trait values, whether it be ancestry,
disease status, height, etc. Critically, non-genetic factors of a cohort
also influence a GWAS (e.g., environmental exposures and social
determinants of health can introduce bias in a genetic study).

PGS are popular in the social/behavioral sciences for predicting
social outcome traits, such as educational attainment (EA; number
of schooling years completed by an adult). There is also interest in
predicting standardized testing scores, performance in mathematics,
and other traits with substantial environmental influences. A com-
mon metric for assessing PGS accuracy is the percentage of trait
variance it explains: higher percentages indicate better predictive
performance. A recent 23andMe EA PGS, based on data from over
3 million customers of European descent, explains 12-16% of the
variance 5 in educational attainment (EA) [17]. In their test dataset,
50-70% of individuals with PGS scores in the top 10% for EA did,
as predicted, graduate college. However, the PGS accuracy signif-
icantly decreases when applied to African American customers.
This is an example of the commonly observed “portability problem”
[14], where a PGS derived from GWAS in one population predicts
poorly in another due to confounding6.

There have been several calls to use EA PGS to inform education
policy. Harden et al. propose the use of math-performance PGS to
identify “leaks” in the education system: for example, by identifying
high math PGS students who perform poorly, they claim educators
could pinpoint why and how students are failing to reach their
potential7 [10]. Plomin & von Stumm take it further: they use the
term “precision education” (akin to precision medicine) to propose
a tailor-made, individualized education that is genetics-informed
[19]. Statements like this, combined with statements such as “stu-
dents with higher polygenic scores for years of education have,
on average, higher cognitive ability, better grades and come from
families with higher SES [socioeconomic status]” [20] are cause
for concern because they invoke a sense of genetic determinism.
However, other predictors (parents’ educational status, socioeco-
nomic status) explain similar amounts of variance in EA [12, 15]
and—unlike DNA—are mutable through social policy changes.

Several of our values would be violated if children were required
to submit their DNA (Right to Action) or educational opportunities
were denied to children based on their genetic potential (Opportu-
nities for Advancement). Through the vulnerabilities of unsettled
science, the rapid evolution of genetic methods, and limited scope
of current state genetic anti-discrimination and data privacy laws
– which often differ in protections and rights from state to state –
harms such as leakage to the family can occur and affect not only
children but their families and future. Federal protections are un-
clear in this context since EA data is neither explicitly classified as

5As a useful comparison, mother’s education explains 15% of the variance in EA [12]
6Confounding in GWAS can be genetic (non-causal variants correlated with causal
ones) or environmental (non-causal variants correlated with causal environmental
factors), leading to potential statistical artifacts in effect sizes.
7An example they use: 31% of high PGS students in good schools take calculus, com-
pared to 24% of the same-scoring students in poor-performing schools.
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protected health information under HIPAA nor related to employ-
ment, housing, or insurance, which would fall under GINA. Other
potential safeguards, such as institutional review boards (IRBs),
the Food and Drug Administration (FDA), and the Federal Trade
Commission (FTC), are also inapplicable. The lack of centralized
regulation poses serious risks to individuals in similar future sce-
narios, where the issue of poor data and model governance leads
to significant oversight and insufficient protections.

4 Recommendations
We propose three amendments to existing policy to ensure robust
and future-proofed data governance. These address open privacy
concerns, legislative scoping for policy changes, and best practices
for bodies handling genetic data.

4.1 Recommendation 1: Redefining Genetic
Data

Issue: Legal policy surrounding genetic privacy notably excludes
deidentified or anonymized data from protection.

Recommendation: Given that we argue that genetic data is
unique compared to any other identifying data, we suggest ge-
netic data be defined using the following language: “Genetic data
includes any information on an individual’s genetic traits, such
as DNA/RNA sequences, gene expression, or data from biological
samples—including relatives—regardless of format. This data is in-
herently identifiable and considered PII, as it pertains to unique
biological attributes linkable to individuals or groups. De-identified,
pseudonymized, or anonymized genetic data remains genetic data,
recognizing the potential for re-identification through advanced
methods.”

4.2 Recommendation 2: Extending Protections
for Genetic Discrimination

Issue: GINA is a vital piece of federal legislation that protects
against genetic discrimination in employment and health insurance
domains. However, other domains inwhich there exists potential for
genetic discrimination are not protected by GINA: other insurance
domains (life, long-term care, disability), housing, and education.

Recommendation: We recommend expanding GINA’s protec-
tions beyond employment and health insurance. While California’s
CalGINA covers housing, mortgage brokerage, and education, it
still excludes life, disability, and long-term care insurance. Any and
all GINA extension bills should explicitly protect these areas, along
with education and any opportunities for advancement, ensuring
no barriers to opportunity. Additionally, legislation should prohibit
considering genetic risk for complex traits with significant envi-
ronmental influences (e.g., cardiovascular disease) as preexisting
conditions.

4.3 Recommendation 3: A Genetic Data
Regulation Framework

Issue: Current regulations were designed to govern one applica-
tion of genetic data—or Pillar—at a time. This has led to “leaky
protections”, where the use of genetic data in one Pillar can affect

opportunities and decisions in other Pillars (e.g., clinical tests being
used in life insurance).

Recommendation: To prevent leaky protections, we propose a
uniform regulatory framework covering all genetic data use, from
collection to inference. We emphasize privacy rights to hold data-
holding organizations accountable, not the individuals from whom
data is collected [21]. We suggest that any entity must have prior
regulatory approval to collect or store genetic material or data. Ap-
proval requires a clear commitment to individuals’ basic rights over
their genetic data. After entity approval, we examine genetic tests
and propose requiring entities to publish white papers detailing test
procedures, quality control, inferential models, result presentation,
and reproducibility. Next, individuals should be able to (1) request
data removal, (2) opt-in/out of third party data transfers, (3) opt-
in/out of being informed of incidental genetic discovery. Finally,
genetic data ownership should extend only to approved companies
acquiring it through mergers or bankruptcy. If no approved entity
can manage the data, we propose a protocol akin to nuclear waste
disposal[7], ensuring all samples, data, and models are irreversibly
destroyed. This framework not only addresses leaky protections
but also ensures ethical, safe science in the public interest while
safeguarding the rights of individuals contributing to or analyzing
genetic data.
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