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Abstract
Reinforcement Learning from Human Feedback (RLHF) is central
in aligning large language models (LLMs) with human values and
expectations. However, the process remains susceptible to gov-
ernance challenges, including evaluator bias, inconsistency, and
the unreliability of feedback. This study investigates how the cog-
nitive capacity of evaluators, precisely their level of rationality,
influences the stability of reinforcement signals. A controlled exper-
iment comparing high-rationality and low-rationality participants
shows that evaluators with higher rationality scores produce sig-
nificantly more consistent, expert-aligned feedback. In contrast,
lower-rationality participants demonstrate considerable variabil-
ity in their reinforcement decisions (𝑝 < 0.01). To address these
challenges and improve RLHF governance, we recommend imple-
menting evaluator pre-screening, systematic auditing of feedback
consistency, and reliability-weighted reinforcement aggregation.
These measures enhance AI alignment pipelines’ fairness, trans-
parency, and robustness.

CCS Concepts
• Human-Computer Interaction (HCI)→ Governance and Fair-
ness in Human-in-the-Loop Systems.
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1 Introduction
Reinforcement Learning fromHuman Feedback (RLHF) has emerged
as a cornerstone for aligning large language models (LLMs) with
human intentions, enabling adaptive behavior beyond hardcoded
objectives. Prominent models such as GPT-4, Claude, Bard, and
LLaMA 2-Chat rely heavily on RLHF to refine their outputs through
human preference signals [2, 15]. The RLHF pipeline typically in-
volves three core stages: collecting human feedback, training a
reward model to predict that feedback, and optimizing the model
policy via reinforcement [4, 18] (Figure 1).

Human Feedback Reward Model Policy

Human Evaluation Supervised Reward Learning with 
Feedback

Rewards for Reinforcement Learning

Figure 1: A Structured Framework for Reinforcement Learn-
ing: Integrating Human Feedback, Reward Modeling, and
Policy Optimization.

Despite its widespread adoption, RLHF is not without risk. As AI
systems take on increasingly high-stakes responsibilities—ranging
from legal reasoning to content moderation—the reliability of hu-
man evaluators becomes a critical point of failure. Human feedback
is often inconsistent, cognitively biased, or misaligned with expert
judgment [7, 12]. These weaknesses are exacerbated when feedback
originates from individuals with limited reasoning capacity or cul-
tural homogeneity, leading to volatile and potentially adversarial
reinforcement signals.

Current RLHF pipelines rarely include governance safeguards to
evaluate the quality of human input. Without robust auditing and
evaluator vetting, models trained on unfiltered human feedback
may reflect irrational, biased, or unstable behavior, undermining
trust and generalizability. As LLMs’ capabilities continue to scale,
governance strategies must shift from merely collecting feedback
to actively managing their quality and representativeness.

This study addresses a critical gap in RLHF governance: the role
of human rationality in shaping the stability and fairness of rein-
forcement signals. We present empirical evidence showing that
high-rationality evaluators generate significantly more consistent
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and expert-aligned feedback compared to their lower-rationality
counterparts. These findings raise urgent questions about who
should serve as evaluators in alignment pipelines and what mecha-
nisms are needed to ensure trustworthy RLHF.

Our contributions are threefold:

(1) We quantify the impact of evaluator rationality on the consis-
tency of reinforcement signals, using real-world rationality
tasks and expert-labeled benchmarks.

(2) We identify key governance risks arising from unqualified
or demographically homogeneous evaluators and propose
mechanisms to mitigate these risks.

(3) We introduce a governance framework for RLHF that in-
cludes evaluator pre-screening, feedback consistency audit-
ing, and reliability-weighted aggregation.

These interventions offer a path forward for improving AI align-
ment systems’ fairness, transparency, and robustness. This work
contributes to a growing body of literature calling for more human-
centered and governance-aware approaches to designing reinforce-
ment learning pipelines.

2 Related Work
Reinforcement Learning from Human Feedback (RLHF) is widely
used to align large language models (LLMs) with human pref-
erences. However, research highlights its limitations, including
hallucinations[10, 26], biased model responses[16, 21], and syco-
phantic behavior—where models optimize for agreement rather
than correctness [17]. RLHF also poses privacy risks, as models may
memorize and leak sensitive data [5, 11]. Furthermore, it has failed
to prevent adversarial attacks, such as jailbreaking and prompt injec-
tion, which threaten real-world security [1, 13, 23, 24]. Alternative
approaches have been proposed to address these challenges. Con-
stitutional AI[2] integrates predefined principles to improve align-
ment, while adversarial training[8] strengthens model robustness
against manipulation. Other methods, such as human-in-the-loop
evaluation[6] and multi-step reward modeling[22], seek to enhance
reliability. However, these solutions do not fully resolve RLHF’s
limitations, as they still depend on human feedback, which is prone
to biases, inconsistencies, and rationality gaps.Building on prior
research, this work systematically assesses RLHF’s governance fail-
ures, focusing on evaluator reliability, transparency, and fairness.
Unlike previous studies that focus on technical refinements, we ex-
amine the structural deficiencies of RLHF, highlighting the risks of
low-rationality evaluators and proposing governance mechanisms
to improve reinforcement consistency and bias mitigation.

3 Methodology
To examine how the selection of human evaluators influences the
consistency and objectivity of reinforcement learning signals, we
conducted a two-stage online experiment with ten participants,
each holding at least a bachelor’s or master’s degree. The goal was
to assess how reliably humans evaluate model-generated outputs
and to quantify potential biases in their feedback.

3.1 Participant Grouping and Rationality
Assessment

Participants first completed a 20-item rationality test adapted from
Burgoyne et al. [3] to evaluate cognitive reflection and reasoning
ability. Based on test performance, participants were stratified into
groups representing varying levels of rational reasoning expertise.
Higher scores were used as a proxy for greater evaluative compe-
tence.

3.2 AI Response Evaluation Task
Each participant then evaluated 25 AI-generated responses from
GPT-4 [14] on a new set of multiple-choice rationality questions.
Participants assessed each AI answer for correctness, even when
the response differed from their judgment. A separate set of 25
questions was also generated by GPT-4 using the OpenAI API with
default parameters (e.g., temperature, top-p) to ensure unbiased
generation conditions. Participants evaluated these AI-generated
questions to assess the robustness of their reinforcement signals
under less familiar or less structured conditions.

3.3 Metrics for Consistency and Bias
To quantify the quality of human feedback, we introduced two core
metrics: Test-Retest Consistency Score (TRCS) and Bias Deviation
(BD).

Test-Retest Consistency Score (TRCS) measures the internal
stability of each evaluator’s feedback across two evaluation rounds
on the same set of model outputs:

𝑇𝑅𝐶𝑆 =
Number of Unchanged Responses

Total Responses , (1)

where higher values indicate greater consistency and decision sta-
bility over time.

Bias Deviation (BD) captures the extent to which individual
evaluators deviate from expert-aligned ground truth. It is computed
as the average absolute difference between the evaluator’s binary
reinforcement signal (𝐹𝑖 ) and the expert-annotated ground truth
label (𝐺𝑖 ), across 𝑁 questions:

𝐵𝐷 =
1
𝑁

𝑁∑︁
𝑖=1

|𝐹𝑖 −𝐺𝑖 | . (2)

A BD score of 0 indicates perfect alignment with expert judgment,
while higher values reflect increasing divergence and potential
evaluator bias.

A psychology Ph.D. student with domain expertise in rational-
ity assessment created all expert labels independently. To ensure
transparency and reproducibility, the full dataset of questions—both
adapted and AI-generated—will be made available in our GitHub
repository.

4 Results and Analysis
4.1 Consistency in Reinforcement Signals
Participants who performed well on pre-screening tests exhibited
significantly higher feedback stability, with a 92%

Table 1 presents the TRCS results for both groups.
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Table 1: Test-Retest Consistency Score (TRCS) Across Evalu-
ator Groups

Group TRCS Mean Standard Deviation

High-Rationality 0.92 0.05
Low-Rationality 0.45 0.17

4.2 Bias Deviation in Reinforcement Decisions
The results in Table 2 show that high-rationality evaluators ex-
hibited significantly lower bias deviation (BD = 0.08) compared to
the low-rationality group (BD = 0.34), with a notable difference
in standard deviation. This indicates that legal experts provided
more consistent and reliable reinforcement signals, while general
population participants demonstrated more significant variability,
leading to potential biases in RLHF.

Table 2: Bias Deviation in Reinforcement Decisions

Group Bias Deviation (BD) Standard Deviation

High-Rationality 0.08 0.04
Low-Rationality 0.34 0.12

(a) Bias Deviation in Reinforce-
ment Feedback.

(b) Reinforcement Stability Across
Evaluator Groups.

Figure 2: Comparison of bias deviation and reinforcement
stability across evaluator groups.

5 Discussion
Our results demonstrate that evaluators’ selection and cognitive
aptitude are critical in the quality and consistency of reinforcement
learning from human feedback (RLHF). Specifically, we observed
that participants with higher rationality scores delivered signifi-
cantly more stable and expert-aligned feedback, as reflected in both
the Test-Retest Consistency Score (TRCS) and the lower Bias De-
viation (BD) from expert ground truth. This suggests that rational
reasoning ability is a desirable trait and a foundational requirement
for evaluators in alignment pipelines.

These findings highlight a broader concern in RLHF design: not
all human feedback is equal. The RLHF process risks introducing
systematic biases without rigorous pre-screening or qualification
metrics. This is particularly problematic when evaluators are se-
lected for economic efficiency rather than evaluative competence.
Outsourcing RLHF tasks to lower-cost labor markets—such as the
Philippines or Kenya—is now standard industry practice. Yet, it

creates a monoculture of feedback that reflects limited cultural,
linguistic, and epistemic perspectives [19, 20]. Such demographic
homogeneity may distort the development of "aligned" AI by over-
fitting models to the dominant worldview of a narrow population
of annotators.

Moreover, our findings challenge the assumption that large num-
bers of annotators inherently yield better feedback. When low-
rationality evaluators are included, aggregation may dilute the
expert signal and amplify noise, particularly if simple majority vot-
ing mechanisms are used. Reinforcement feedback must therefore
be weighted by evaluator reliability, not treated uniformly. This
reinforces the need to integrate competence-based pre-screening
and post-hoc consistency auditing into RLHF pipelines.

A further implication concerns the interpretability of the bias
metric itself. We proposed that the Bias Deviation (BD) score quan-
tifies how far an evaluator’s feedback diverges from expert-labeled
responses. Importantly, this deviation is not treated as mere dis-
agreement but as a signal of potential misalignment. While multiple
valid perspectives exist in subjective domains, in structured ratio-
nality tasks, such as those used here, there exists a clear normative
ground truth. Therefore, the BD metric is a proxy for epistemic
alignment, not just preference diversity. This is crucial for RLHF in
domains like law, medicine, and public policy, where correctness is
not purely subjective.

Future governance frameworks must embed these evaluative
safeguards more deeply to build more representative and fair AI
systems. Technical fixes—such as adversarial input filtering, outlier
suppression, and ensembling—can reduce some inconsistencies, but
they are no substitute for human-centered design. As we argue,
integrating HCI-informed solutions such as reputation tracking,
diversified feedback sourcing, and feedback quality visualization is
essential to ensure the trustworthiness of RLHF processes.

We further advocate for a transformative shift toward decentral-
ized evaluator selection. Integrating Decentralized Autonomous
Organizations (DAOs) with blockchain-backed audit trails offers a
promising direction. DAOs can support the transparent recruitment,
ranking, and compensation of evaluators based on their historical
reliability and specialization. Smart contracts can manage evaluator
incentives, ensure dispute resolution, and automate the removal of
consistently biased actors. This structure empowers contributors
globally, moving beyond geographic bias toward a more skill- and
value-aligned feedback ecosystem [9, 25].

In essence, we propose a future where AI alignment is governed
not by opaque corporate hierarchies, but by transparent, decen-
tralized, and meritocratic systems that value high-quality human
judgment. Our findings suggest that such reform is possible—and
necessary—for the next generation of trustworthy AI.
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